
Security Audit
Audius Staking Bridge

Lead Auditor: Thomas Lambertz

Second Auditor: Nico Gründel

Administrative Lead: Thomas Lambertz

November 27th 2023

Security Audit
Audius Staking Bridge

Table of Contents

Executive Summary 3

1 Introduction 4
Findings Summary . 4

2 Scope 5

3 Project Overview 6
Functionality . 6
On-Chain Data and Accounts . 6
Authority Structure and Off-Chain Components . 6
Instructions . 7

4 Findings 8
ND-AUD2-H1 High; Resolved; Loss-of-Funds in Staking Bridge Temporary USDC Holdings . 9
ND-AUD2-I1 Info; Remediated; Arbitarge and MEV susceptibility 11
ND-AUD2-I2 Info; Resolved; Anchor readability improvements 12

Appendices

A About Neodyme 14

B Methodology 15

C Vulnerability Severity Rating 16

2 / 17

Security Audit
Audius Staking Bridge

Executive Summary
Neodyme audited two of Audius’ on-chain programs, namely the Staking Bridge and Payment
Router during late August and September 2023. This report is only for the Staking Bridge, with an
accompanying report detailing the router.

The auditors found that Audius’ programs comprised a clean design and straightforward functionality.
According to Neodymes Rating Classification, one high severity and only two informational issues
were found. The number of findings identified throughout the audit, grouped by severity, can be seen
in Figure 1.

All findings were reported to the Audius developers and addressed promptly. The security fixes were
verified for completeness by Neodyme. In addition to these findings, Neodyme delivered the Audius
team a list of nit-picks and additional notes that are not part of this report.

Figure 1: Overview of Findings

3 / 17

Security Audit
Audius Staking Bridge

1 | Introduction
During the summer of 2023, Audius commissioned Neodyme to conduct a detailed security analysis of
two of their new contracts: The Staking Bridge and Payment Router. Two senior auditors performed
the audit between August 28th and September 1st, 2023. To account for fixes in the contract, additional
auditing was carried out later in September. This report details all findings and their fixes for the
Staking Bridge.

The audit mainly focused on the contract’s technical security but also considered its design and
potential social engineering attack vectors. After the introduction, this report details the audit’s Scope,
gives a brief Overview of the Contract’s Design, then goes on to document Findings.

The contracts are straightforward, with no unnecessary authorities or complications. They are open-
source and rely on the established Anchor framework, integration tests are available. The Audius team
always responded quickly and competent to findings and questions of any kind.

Findings Summary

During the audit, one security-relevant and two informational findings were identified. Audius
remediated all of those findings before the contract’s launch.

In total, the audit revealed:

0 critical • 1 high-severity • 0 medium-severity • 0 low-severity • 2 informational

issues.

The high severity finding addresses a vulnerability where anyone could claim USDC tokens, which
the Staking Bridge temporarily held, instead of the intended recipient on Ethereum. All findings are
detailed in the Findings section.

4 / 17

https://audius.co/
https://neodyme.io

Security Audit
Audius Staking Bridge

2 | Scope
The contract audit’s scope comprised of a smart-contracts developed by Audius: The Staking Bridge.
Another contract, the Payment Router was audited as well but is not part of this report.

During the audit, we focused on the implementation security of the source code and the security of
the overall design.

All of the source code is located at https://github.com/AudiusProject/audius-protocol/tree/main/sol
ana-programs. Only the bridge contract mentioned is in scope; third-party dependencies are not. As
Audius only relies on the well-established Anchor library, the security-txt standard, and a dependency
on the hex crate, this does not seem problematic.

Relevant source code revisions are:

• 1659604268cf5f8ac562f05d829d982f2c41c3d1 • Start of the audit
• e10316718141bd96e683dac57422b5716c70b850 • Commit including all reviewed se-

curity fixes

5 / 17

https://github.com/AudiusProject/audius-protocol/tree/main/solana-programs
https://github.com/AudiusProject/audius-protocol/tree/main/solana-programs

Security Audit
Audius Staking Bridge

3 | Project Overview
This section briefly outlines the contracts’ functionality, design, and architecture followed by a discus-
sion on its authorities and security features.

Functionality

The Staking Bridge allows users to easily swapUSDC toAUDIO, which are then transferred via Wormhole
to a hardcoded Ethereum address. The swapping and transferring aren’t done by users but with a
permissionless cranker. This groups multiple user transfers together to reduce fees. There is no
on-chain staking-token emitted by the bridge, it is one-way only.

On-Chain Data and Accounts

The on-chain contract doesn’t need to maintain much state. It controls two associated token accounts
(ATAs) it can create itself, one for USDC and one for AUDIO tokens. As authority, it uses a single PDA
with seeds staking_bridge.

Authority Structure and Off-Chain Components

There are no explicit contract authorities except for the upgrade authority. Audius plans reqlinquish
the upgrade authority before the contracts have substantial adoption. As the contracts don’t store
any data, they can be redeployed to different addresses if changes are required. This will make the
contracts truly permissionless.

There is no configuration or an admin account, as all functions are permissionless. The functionality
users gain by staking is handled off-chain and out-of-scope in this audit.

6 / 17

Security Audit
Audius Staking Bridge

Instructions

The contract is straightforward and only has four instructions, which we briefly summarize here for
completeness.

Table 1: Instructions with Descriptions for Staking Bridge

Instruction Category Summary

CreateStakingBridgeBalancePda Permissionless,
One-Time

Initialize an anchor account at the PDA,
which will own the funds. Not strictly
necessary to create, but makes it clear which
account is the correct one.

CreateStakingBridgeBalanceAtas Permissionless,
One-Time

Create two ATAs for the PDA, one for AUDIO,
one for USDC. ATAs can be created by anyone,
but this makes it clear the contract only cares
about those two tokens.

RaydiumSwap Permissionless Swap a caller-specified amount of USDC
tokens from the contracts ATA into AUDIO
tokens via Raydium. Both token source and
recipient account are owned by the
hardcoded PDA. The caller specifies slippage
parameters.

PostWormholeMessage Permissionless Transfer a caller-specified amount of AUDIO
tokens from the contracts ATA to a
hardcoded Ethereum address. The caller also
specifies which Wormhole nonce to use.

7 / 17

Security Audit
Audius Staking Bridge

4 | Findings
This section outlines all of our findings. They are classified into one of five severity levels, detailed in
Appendix C. In addition to these findings, Neodyme delivered the Audius team a list of nit-picks and
additional notes that are not part of this report.

All findings are listed in Table 3 and further described in the following sections.

Table 2: Findings

Identifier Name Severity State

ND-AUD2-H1 Loss-of-Funds in Staking Bridge Temporary USDC Holdings High Resolved

ND-AUD2-I1 Arbitarge and MEV susceptibility Info Resolved

ND-AUD2-I2 Anchor readability improvements Info Resolved

8 / 17

Security Audit
Audius Staking Bridge

ND-AUD2-H1 – Loss-of-Funds in Staking Bridge Temporary USDC Hold-
ings

Severity Impact Affected Component Status

High Temporary USDC Holding can be withdrawn
by anyone

Swap Resolved

A user might use the Payment Router to route USDC payments to the Staking Bridge. The staking-
bridge will temporarily hold the funds until a cranker does the Raydium swap to AUDIO and, later, the
Wormhole transfer.

The swap between USDC and AUDIO is permissionless; anyone can trigger it. Because of insufficient
checks of the used Raydium Pool, an attacker can steal all USDC tokens stored in the contract at that
time, by supplying a custom Raydium pool in the swap operation. Raydium allows anyone to create
permissionless pools (Docs). Each Raydium Pool has a unique OpenBook DEX Market, but those aren’t
unique for each token pair.

An attack might look as follows: - Create new OpenBook Market for Audius/USDC - Create a new
Raydium Pool for that market - The market has no external liquidity, so that an attacker can manipulate
the price at will - Attacker uses bridge::raydium_swap()with his own Raydium pool, specifying
1 as minimum_amount_out - The contract will sell all of the accumulated USDC for 1 audius token. -
The attacker withdraws all liquidity from the market, pocketing the gained USDC.

As the contract will hold USDC funds only for short amounts of time, the impact will be limited in terms
of total value lost. As the source account is checked to have a USDC mint, the AUDIO funds are not
affected.

Suggestion

Hardcode the Raydium market key or make the swap permissioned. Specifically, we recommend to
add the following checks directly in the anchor account macro:

• program_id matches Raydium (rename to raydium_program)
• serum_program matches openbook
• Check that amm and optionally serum_market match the expected market. Since one is derived

from the other, it is technically enough to check only one.

9 / 17

https://raydium.io/liquidity/create/
https://docs.raydium.io/raydium/pool-creation/creating-a-standard-amm-pool

Security Audit
Audius Staking Bridge

Remediation

The Audius team implemented a fix in 65794ebb3fb45442e82f11a48c9bdcd81b40ffee. The
fix implements a check that both the Serum and Raydium markets are correct, which fixes this issue.

10 / 17

Security Audit
Audius Staking Bridge

ND-AUD2-I1 – Arbitarge and MEV susceptibility

Severity Impact Affected Component Status

Informational - Economics Remediated

All on-chain swaps are vulnerable to sandwiching attacks. These are attacks where you sandwich a
victim transaction that does a swap between two transactions that manipulate the price of the used
market or pool to the attacker’s advantage. This is usually defended against by providing a maximum
allowed slippage or a target price inside the swap transaction. If the price is outside of that expected
range, the swap is aborted.

In the case of the staking-bridge, which uses Raydium, the minimum_amount_out value is correctly
specified. However, since this instruction is permissionless, an attacker could set this amount arbitrarily
low.

How feasible such an attack is depends on many economic factors that are constantly changing. Most
important are how liquid the market is, how many funds are available to swap in the staking bridge,
and how expensive trading fees and flash-loans are.

If the value of the tokens in the swap is very low compared to the liquidity in the pool, it might not be
economical to pay the trading fees to manipulate the price sufficiently. However, the liquidity provider
could pull liquidity at any time for free.

Suggestions

This is an issue with all permissionless swaps and can be worked around in three ways:

1. Make the swap permissioned. The keys authorized to do the swap are then trusted to provide an
accurate slippage value.

2. Use a reliable and trusted price oracle. As far as we are aware, that isn’t available for AUDIO.
3. Keep the value available for swaps low enough so that it won’t be worth it to attack.

It’s also possible to do a variant of 1: Make the contract permissioned, but open it up for everyone in
case the swap doesn’t happen for too long.

Remediation

The Audius team will ensure that swaps are happening often enough, so that that a sandwich attach
won’t be economical.

11 / 17

Security Audit
Audius Staking Bridge

ND-AUD2-I2 – Anchor readability improvements

Severity Impact Affected Component Status

Informational - Anchor Checks Resolved

The contract uses Anchor to do a lot of the necessary account checks. All required checks are present,
but some could be improved, as they currently are slightly inconsistent. While it does not cause direct
security or usability issues, it does make it harder for users to review the contract quickly.

Some improvement suggestions:

• The staking contract currently uses unchecked accounts for the Serum and Raydium programs
in swap(), and checks them later with a separate function. That is fine, but it’s more readable
to do that directly in Anchor. Since Raydium isn’t an Anchor program, you can’t directly rely on
Anchors Program accounts, but you can put an account key check into the #[account()]
macro.

• The staking contract currently has inconsistent checks on the accounts that are transparently
passed through to Raydium and Serum. Some are verified (like amm_open_orders), and some
are not (like pool_coin_token_account). From a pure security perspective, there don’t have
to be checks on any of these PDA-derived accounts, as Raydium and Serum will have to do that
themselves anyway. This “pre-check” pattern can be helpful for better error messages, but given
that the market here should always be the same, it might be unnecessary compute consumption.

• Another example is the staking_bridge_pda account. It is initialized as Account<'info
, Empty>, but later used as UncheckedAccount<'info>. While this doesn’t cause user-
facing issues, it would be more consistent to use the Empty tag everywhere. That way, it is also
verified that the bump seed provided by the user is the correct one, which isn’t guaranteed
otherwise. Anchor does not verify that the bump seed on an account is the canonical account
seed if it is explicitly provided and the account is not being initialized. Usually, the account is
either being initialized or type-tag-checked. However, since UncheckedAccount is used, the
type tag check is missing. Due to the way the programs are structured, this doesn’t cause visible
issues, though. An attacker could swap between a different token-account pair but doesn’t gain
anything.

• from_owner in wormhole doesn’t need to be mutable.
• The “CHECK” annotations aren’t as helpful as they could be. They can be improved by specifying

not only what the account is, butwhy a check is not necessary. Instead of

12 / 17

Security Audit
Audius Staking Bridge

1 /// CHECK: This is the open orders account for the pool. No check
necessary.

one could write

1 /// CHECK: This is the open orders account for the pool. Passed
through to raydium and checked there.

Again, all of these issues aren’t security issues but reduce the readability of the code.

Remediation

The Audius team improved the checks in a number of commits: cc4cfab, e741112, fdf5581,
308ba2e, 82f03ac, 55b8323.

13 / 17

Security Audit
Audius Staking Bridge

A | About Neodyme
Security is difficult.

To understand and break complex things, you need a certain type of people. People who thrive in
complexity, who love to play around with code, and who don’t stop exploring until they fully understand
every aspect of it. That’s us.

Our team never outsources audits. Having found over 80 High or Critical bugs in Solana’s core code
itself, we believe that Neodyme hosts the most qualified auditors for Solana programs. We’ve also
found and disclosed critical vulnerabilities in many of Solana’s top projects and have responsibly
disclosed issues that could have resulted in the theft of over $10B in TVL on the Solana blockchain.

All of our team members have a background in competitive hacking. During such hacking competitions,
called CTFs, we competed and collaborated while finding vulnerabilities, breaking encryption, reverse
engineering complicated algorithms, and much more. Through the years, many of our team members
have won national and international hacking competitions, and keep ranking highly among some of the
hardest CTF events world-wide. In 2020, some of our members started experimenting with validators
and became active members in the early Solana community. With the prospect of an interesting
technical challenge and bug bounties, they quickly encouraged others from our CTF team to look for
security issues in Solana. The result was so successful that after reporting several bugs, in 2021, the
Solana Foundation contracted us for source code auditing. As a result, Neodyme was born.

14 / 17

Security Audit
Audius Staking Bridge

B | Methodology
Neodyme prides itself on not being a checklist auditor. We adapt our approach to each audit, investing
considerable time into understanding the program upfront and exploring its expected behavior, edge
cases, invariants, and ways in which the latter could be violated. We use our uniquely deep knowledge
of Solana internals, and our years-long experience in auditing Solana programs to even find bugs that
others miss. We often extend our audit to cover off-chain components, in order to see how users could
be tricked or the contract affected by bugs in those components.

Nonetheless, we also have a list of common vulnerability classes, which we always exhaustively look
for. We provide a sample of this list below.

• Rule out common classes of Solana contract vulnerabilities, such as:

– Missing ownership checks
– Missing signer checks
– Signed invocation of unverified programs
– Solana account confusions
– Redeployment with cross-instance confusion
– Missing freeze authority checks
– Insufficient SPL account verification
– Missing rent exemption assertion
– Casting truncation
– Arithmetic over- or underflows
– Numerical precision errors

• Check for unsafe design which might lead to common vulnerabilities being introduced in the
future

• Check for any other, as-of-yet unknown classes of vulnerabilities arising from the structure of
the Solana blockchain

• Ensure that the contract logic correctly implements the project specifications
• Examine the code in detail for contract-specific low-level vulnerabilities
• Rule out denial of service attacks
• Rule out economic attacks
• Check for instructions that allow front-running or sandwiching attacks
• Check for rug pull mechanisms or hidden backdoors

15 / 17

Security Audit
Audius Staking Bridge

C | Vulnerability Severity Rating
Critical Vulnerabilities that will likely cause loss of funds. An attacker can trigger them with little or

no preparation, or they are expected to happen accidentally. Effects are difficult to undo after
they are detected.

High Bugs that can be used to set up loss of funds in a more limited capacity, or to render the contract
unusable.

Medium Bugs that do not cause direct loss of funds but that may lead to other exploitable mechanisms,
or that could be exploited to render the contract partially unusable.

Low Bugs that do not have a significant immediate impact and could be fixed easily after detection.
Info Bugs or inconsistencies that have little to no security impact.

16 / 17

Security Audit
Audius Staking Bridge

Neodyme AG

Dirnismaning 55
Halle 13
85748 Garching
E-Mail: contact@neodyme.io

https://neodyme.io

17 / 17

https://neodyme.io

	Executive Summary
	Introduction
	Findings Summary

	Scope
	Project Overview
	Functionality
	On-Chain Data and Accounts
	Authority Structure and Off-Chain Components
	Instructions

	Findings
	 ND-AUD2-H1 High; Resolved; Loss-of-Funds in Staking Bridge Temporary USDC Holdings
	 ND-AUD2-I1 Info; Remediated; Arbitarge and MEV susceptibility
	 ND-AUD2-I2 Info; Resolved; Anchor readability improvements

	About Neodyme
	Methodology
	Vulnerability Severity Rating

